on discriminativity of zagreb indices
Authors
abstract
zagreb indices belong to better known and better researched topological indices. weinvestigate here their ability to discriminate among benzenoid graphs and arrive at some quiteunexpected conclusions. along the way we establish tight (and sometimes sharp) lower andupper bounds on various classes of benzenoids.
similar resources
On discriminativity of Zagreb indices
Zagreb indices belong to better known and better researched topological indices. We investigate here their ability to discriminate among benzenoid graphs and arrive at some quite unexpected conclusions. Along the way we establish tight (and sometimes sharp) lower and upper bounds on various classes of benzenoids.
full textOn discriminativity of vertex-degree-based indices
A recently published paper [T. Došlić, this journal 3 (2012) 25-34] considers the Zagreb indices of benzenoid systems, and points out their low discriminativity. We show that analogous results hold for a variety of vertex-degree-based molecular structure descriptors that are being studied in contemporary mathematical chemistry. We also show that these results are straightforwardly obtained by u...
full textNew Bounds on Zagreb Indices
The Zagreb indices are among the oldest and the most famous topological molecular structure-descriptors. The first Zagreb index is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index is equal to the sum of the products of the degrees of pairs of adjacent vertices of the respective graph. In this paper, we characterize the extremal graphs with maximal, sec...
full textOn the Zagreb Indices Equality
For a simple graph G with n vertices and m edges, the first Zagreb index and the second Zagreb index are defined as M1(G) = ∑ v∈V d(v) 2 and M2(G) = ∑ uv∈E d(u)d(v). In [34], it was shown that if a connected graph G has maximal degree 4, then G satisfies M1(G)/n = M2(G)/m (also known as the Zagreb indices equality) if and only if G is regular or biregular of class 1 (a biregular graph whose no ...
full textOn multiplicative Zagreb eccentricity indices
Abstract Analogues to multiplicative Zagreb indices in this paper two new type of eccentricity related topological index are introduced called the first and second multiplicative Zagreb eccentricity indices and is defined as product of squares of the eccentricities of the vertices and product of product of the eccentricities of the adjacent vertices. In this paper we give some upper and lower b...
full textOn leap Zagreb indices of graphs
The first and second Zagreb indices of a graph are equal, respectively, to the sum of squares of the vertex degrees, and the sum of the products of the degrees of pairs of adjacent vertices. We now consider analogous graph invariants, based on the second degrees of vertices (number of their second neighbors), called leap Zagreb indices. A number of their basic properties is established.
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of mathematical chemistryPublisher: university of kashan
ISSN 2228-6489
volume 3
issue 1 2012
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023